Geometric integrators for multiplicative viscoplasticity: analysis of error accumulation

نویسنده

  • A. V. Shutov
چکیده

The inelastic incompressibility is a typical feature of metal plasticity/viscoplasticity. Over the last decade, there has been a great amount of research related to construction of numerical integration algorithms which exactly preserve this geometric property. In this paper we examine, both numerically and mathematically, the excellent accuracy and convergence characteristics of such geometric integrators. In terms of a classical model of finite viscoplasticity, we illustrate the notion of exponential stability of the exact solution. We show that this property enables the construction of effective and stable numerical algorithms, if incompressibility is exactly satisfied. On the other hand, if the incompressibility constraint is violated, spurious degrees of freedom are introduced. This results in the loss of the exponential stability and a dramatic deterioration of convergence behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Second Order Multirevolution Composition Methods for Highly Oscillatory Stochastic Differential Equations with Additive or Multiplicative Noise

We introduce a class of numerical methods for highly oscillatory systems of stochastic differential equations with general noncommutative noise. We prove global weak error bounds of order two uniformly with respect to the stiffness of the oscillations, which permits to use large time steps. The approach is based on the micro-macro framework of multi-revolution composition methods recently intro...

متن کامل

A Theoretical Framework for Backward Error Analysis on Manifolds

Backward Error Analysis (BEA) has been a crucial tool when analyzing long-time behavior of numerical integrators, in particular, one is interested in the geometric properties of the perturbed vector field that a numerical integrator generates. In this article we present a new framework for BEA on manifolds. We extend the previously known “exponentially close” estimates from R to smooth manifold...

متن کامل

Challenges in Geometric Numerical Integration

Geometric Numerical Integration is a subfield of the numerical treatment of differential equations. It deals with the design and analysis of algorithms that preserve the structure of the analytic flow. The present review discusses numerical integrators, which nearly preserve the energy of Hamiltonian systems over long times. Backward error analysis gives important insight in the situation, wher...

متن کامل

Geometric Integrators for ODEs

Geometric integration is the numerical integration of a differential equation, while preserving one or more of its “geometric” properties exactly, i.e. to within round-off error. Many of these geometric properties are of crucial importance in physical applications: preservation of energy, momentum, angular momentum, phase space volume, symmetries, time-reversal symmetry, symplectic structure an...

متن کامل

A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation

In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009